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1. Introduction

Classroom teachers know that the use of color can be a powerful tool to keep
track of and make sense of mathematical information. The introduction of colored
chalk as well as overhead transparencies and colored markers into instruction in
the second half of the 20th century was a revolution in teaching tools. The
current uses of whiteboard and SmartBoard R� with colored markers continues this
tradition in instructional tools. The use of manipulatives and, to some extent
diagrams, among learners has been researched and incorporated into the toolbox
o↵ered to current and future teachers (e.g., Friel & Markworth, 2009; Smith,
Hillen, & Catania, 2007). However, the potential benefits of the uses of color in
mathematics learning have not been systematically researched. While the research
is new, the idea is not.

In 1847, Oliver Byrne published his reworking of Euclid’s Elements, in which he
used colored diagrams so extensively that the visual representations were
inseparable from the proofs they were intended to support (see Figure 1).
Published at a time when geometers’ attention focused on non-Euclidean
investigations, Byrne’s work was not taken seriously, and was “regarded as a
curiosity” (Cajori, 1928, p. 429). Byrne, however, did not intend his work for
mere entertainment, but said the book enhanced pedagogy and encouraged
retention of mathematical ideas by appealing to the visual. He suggested that by
communicating Euclid’s ideas through colorful renderings, instruction time could
be used more e�ciently and student retention increased (Byrne, 1847). One
hundred and fifty years later, why this is the case is finally coming to be
understood.

There are many ways that the use of color can reduce the di�culty of a problem
situation without decreasing its cognitive complexity. Just as thinking about a
phone number as three chunks of numbers allows us to remember a long string of
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Figure 1. Example of a geometry statement first shown in words
(translated from how Euclid expressed it), and then in colored
shapes as Byrne (1847) represented it.

digits, the use of color can simplify the load on working memory and allow a
learner to represent and strategize more e�ciently (Paschler et al., 2007). Recent
work in the learning sciences suggests that carefully selecting color in visual
representations and combining information in a figure or symbolic expression can
promote the integration of concepts. When presented with multiple sources of
information (e.g., when a teacher relates parts of a mathematical equation to a
graph or a student interprets a diagram), learners must direct their attention to
each individual source, encode separate pieces of information, and then manage
the stored information to make meaningful connections. Splitting attentional
resources is cognitively demanding and may serve as an obstacle to learning. In
fact, clinical research on the use of diagrams indicates that when individual
sources of information are visually integrated, student learning is improved (e.g.,
Bobis, Sweller, & Cooper, 1993).

The work to date on color-coding for understanding symbolic grouping is further
along than the work on color use in figures. In their research with pre-service
elementary teachers, McGowan and Davis (2001) observed that students initially
struggled to move from concrete manipulatives to algebraic expressions, and also
struggled to see connections to binomial expansions. One student, however,
conjectured that binomial expansions such as

(a+ b)n = an +
�n
1

�
an�1b+ · · ·+

� n
n�1

�
abn�1 + bn

could be re-interpreted through the use of two colors. The student represented a
particular problem with a black and white color scheme and substituted black for
a and white for b and restated the second-order equation using B for black and W
for white, as (B +W )2 = B2 + 2BW +W 2. This idea resonated with the rest of
the class and appeared in their subsequent work, indicating to the authors the
algebraic symbols had “become genuinely symbolic – symbolizing something” (p.
441).

In working with secondary students to find a general rule for sequences of
numbers, Waring (2008) used color to highlight relationships in pictorial
representations of the sequences. Using red and blue to di↵erentiate squares
within each figure, students were able to correctly identify a sum of the squares of
two numbers that related back to the figure number, n (see Figure 2).
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Figure 2. Red and blue (here, grey and black) coloring in the
4th figure of a sequence enabled students to see that the nth figure
generalized to n2 + (n� 1)2.

In research on student use of monochromatic figures, Gibson (1998) found that
students use diagrams in several complementary ways:

• to understand information,
• to determine the truthfulness of a statement,
• to discover new ideas, and
• to verbalize their thinking.

Yestness (2012), in extending Gibson’s work, noted that undergraduate students
felt that their drawings were for personal use and not for proof or explanation.
Nonetheless, when asked to explain a proof, students (and mathematicians) will
draw one or more diagrams to support an explanation (e.g., Burton, 2004;
Samko↵, Lai, & Weber, 2012). In fact, compact figural representations appear to
be an intuitively powerful component of mathematical learning in the context of
proofs and proving.

2. Nuances of Representation (models of) and Strategy (models for)

In investigating students’ routes from informal mathematical activity to formal
mathematical reasoning, Zandieh and Rasmussen (2010) explore models as
“student-generated ways of organizing their activity with mental or physical
tools” (p. 74). In particular, they specify a di↵erence between models-of
mathematical activity and models-for mathematical reasoning. It may be that
students can use color in constructing diagrams of geometry proofs in this way –
as a tool of representation, as well as a strategic tool for understanding.

In fact, the Common Core State Standards for mathematics, particularly the
Mathematical Practices, highlight the kind of thinking supported by intentional
color-coding. As noted in the Geometry strand, high school geometry students
build upon elementary and middle school geometry content as they construct
mental models for precise definitions and develop strategies for generating and
validating proofs (CCSSO, 2010). In particular, the Mathematical Practices
indicate that high school students are expected to: develop skill in abstract and
quantitative reasoning, which includes practice creating representations of
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problems (Practice 2); construct arguments and evaluate others’ arguments,
which includes understanding and employing definitions, assumptions, and
previous results for constructing arguments, while also communicating about and
evaluating others’ results (Practice 3), and appropriately and strategically using a
variety of tools, such as paper and pencil (colored or standard), ruler, protractor,
and dynamic geometry software (Practice 5).

3. Illustrating the Ideas: The Case of Charlotte

Here, we share what we are learning in our research on coloring and proofs. In
particular, we focus attention on Charlotte Knight (a pseudonym), an
undergraduate mathematics major preparing to be a secondary mathematics
teacher, and her work while enrolled in a college course focused on modern
geometry. Charlotte regularly employed coloring techniques in her proof-writing
that were similar to the proofs o↵ered by Byrne. Charlotte’s representations
enhanced her understanding in a way that may be of value to K-12 teachers and
their students. We met with Charlotte for a task-based interview with two main
components: first a review of one of the original colored proofs she submitted, in
which she correctly proved that the diagonals of a parallelogram bisect each other,
and then work on a proof covered in class, the Pointwise Characterization of
Angle Bisectors Theorem:

Let A,B, and C be three non collinear points and let P be a
point in the interior of \BAC. Then P lies on the angle

bisector of \BAC if and only if d(P,
 !
AB) = d(P,

 !
AC).

We had colored pens available on the table for her to use. Charlotte spent about
30 minutes of her 75-minute long interview describing how and why she used color
to enhance her proofs. She also used color extensively in generating her proof of
the Angle Bisectors Theorem (about 25 minutes). All four aspects of
diagramming o↵ered by Gibson (1998) and supported by Yestness (2012) were
apparent in Charlotte’s colored proofs.
In particular, Charlotte relied most on color in determining the truthfulness of
statements and writing out ideas. She used color to confirm or refute ideas and to
document the pathways she took. She also used it to reduce her cognitive load –
she found it less mentally taxing to use color (rather than symbols or words).
Including color served to help her sort and organize relationships, which she then
used to write out her proofs. Charlotte used colors in two ways:

(1) as an organizational tool to connect her diagrams to the content of her
proofs (i.e., as a tool of representation) and

(2) as a reasoning tool to understand the theorem (i.e., as a tool for
understanding).

3.1. Color as a tool of representation. In the proof she was asked to
recount, where she proved the diagonals of a parallelogram bisect each other,
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Charlotte employed a 4-color scheme. She used these colors in a way in which the
diagram was inseparable from the proof it was intended to accompany; she colored
the angles to correspond to the underlined colors in her proof (see Figure 3).

Figure 3. Charlotte’s colored proof of the statement that the
diagonals of a parallelogram bisect each other.

In describing this proof, she used the language “purple is congruent to purple,”
“orange is congruent to orange,” “pink is congruent to pink,” and “green is
congruent to green.” That is, the color replaced the alphabetical identifiers and
this is how Charlotte navigated her proof:

I needed to look at, like, labeled the purple angles and then I
underlined them for both so I knew purple was done . . . now
which one is similar to the purple ones . . . to the orange ones
and then I have pink and green left, well pink and then which
one is similar to pink? Green. So that’s how that, that’s how
that went.

In recounting this proof, she spoke primarily of using colors to organize her ideas
and understand the information required to write the proof.
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3.2. Color as a tool for understanding. Charlotte regularly used color to
indicate “direction” in a theorem. She did this when proving “if and only if”
theorems, saying she was uncomfortable with these because she had di�culty
keeping track of which “direction” she was proving, what information she could
assume, and what she was trying to show. In her proof of the Pointwise
Characterization of Angle Bisectors, Charlotte used a 2-color scheme. All
information in the necessary “direction” was designated green and all information
in the su�cient “direction” was designated blue. She then constructed and
colored a diagram to reflect this information. As a result, to Charlotte, the
statement of the theorem changed from “Then P lies on the angle bisector of

\BAC if and only if d(P,
 !
AB) = d(P,

 !
AC)” to “Then green if and only if blue”

(see Figure 4). This served to help her reduce the cognitive load of attending to
both implications in the “2 direction” theorem. It also aided her understanding of
the information required to construct a proof:

I’m not as familiar with this picture . . . so I needed to keep
referencing back and forth here and so I needed to know . . . it’s
kind of like a help to know where I’m going and it’s, it’s a
reference.

Figure 4. Charlotte’s reworking of the statement of the Pointwise
Characterization of Angle Bisectors theorem to “green if and only
if blue” in a class homework assignment.

Charlotte said using the color helped her stay organized, understand the theorem,
and stay on track with her proving goals:

This helps me remember which direction I’m going, ’cause all
the green stu↵ is what I knew from the first half of the
statement . . . I put all of that in green.

As she continued to construct the proof, Charlotte added a second layer of
coloring – one in which she used color to understand and manage the
mathematical content (see Figure 5).
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Figure 5. Charlotte’s second drawing for the Pointwise Charac-
terization of Angle Bisectors Theorem for “green is congruent to
green if and only if purple is congruent to purple.”

I don’t have [segment] AG, I don’t know anything about
[segment] AG so there’s no colors or label, there’s no – nothing.
I don’t know anything about [segment] FA. What I do know is
all in color, so it kind of helps me know, well, this is what I
have to work with, because I don’t want to go try to prove
[segment] FA and [segment] FG, I don’t have anything to work
with to get there, so it helps that I have the purple angles here
to say these are right . . . I don’t think I used anything that
wasn’t related to color in some way. Like I’d never talked about
just the segment FA, you know what I’m saying? I talked about
segment AP, but I gave it a blue squiggle.

4. Discussion

In advanced mathematics the prevailing wisdom is that pictures cannot prove.
Students are discouraged from relying much on their visualizations when it comes
to proofs and proving (Brown, 1997; Hanna, 2000). Charlotte agreed with this
sentiment. She felt it was valuable to have a colored proof for her own
sense-making. That is, a statement such as “If blue is congruent to blue, and
purple is congruent to purple, then red is congruent to red” might be good for her
notes. However, she asserted that without shared meaning, a proof such as this
would not be a correct proof for “mixed company.” Not only does Charlotte’s
view echo Byrne, it also illustrates something Martin Gardner said several years
ago, “There is no more e↵ective aid in understanding certain algebraic identities
than a good diagram. One should, of course, know how to manipulate algebraic
symbols to obtain proofs, but in many cases a dull proof can be supplemented by
a geometric analogue so simple and beautiful that the truth of a theorem is
almost seen at a glance” (Gardner, 1973).

Mathematicians have the mathematical language mastery that allows them to
navigate the formal symbolism of proofs. For students, use of the kinds of
color-coding in visual representations discussed here may enhance understanding
and may even serve as a viable proof-prepratation tool (Arcavi, 2003). While
Byrne’s (1847) assertion that using color-coding would allow students to see, at a
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glance, key parts of an argument generally has been a�rmed by 20th century
research on the mental “chunking” we do to manage complex information,
Charlotte’s work provides substantial support for this in the context of Geometry.
Additionally, we noticed a growing number of students employing the use of color
to support their diagrams in our advanced undergraduate mathematics classes –
particularly those in which a majority of the students enrolled were seeking
secondary mathematics teaching licensure.

As noted in the Common Core State Standards, some students use their
experiences in high school geometry to develop Euclidean and non-Euclidean
geometries as axiomatic systems. When students go on to college and prepare to
become teachers, a collegiate geometry course is where students gain essential
skills in visualization for “understanding the nature of axiomatic reasoning” and
“facility with proof” (CBMS, 2000, p. 41). Yestness (2012) has observed that
expanding pre-service teachers’ experiences to include color-coding as a tool for
their own learning, may “expand their pedagogical choices as teachers” (pp.
226-227).

5. Recommendations for Implementing Color in the Classroom

Although Charlotte was enrolled in an undergraduate modern college geometry
course, high school geometry provides a similar context for teaching with
color-coded proofs. The techniques might also be modified for use in the middle
school classroom to prepare students for the transition to writing proofs in high
school. Through our experiences using color to inform proof-writing in geometry
courses at the undergraduate and secondary levels, we have identified five
essential components for implementing color. We illustrate these
recommendations by way of an example, generating a proof for the following:

5.1. Communication. When incorporating color as a tool for
understanding, explicitly identify and communicate the strategy. Multiple
strategies may emerge during the proving process. Be specific about the use of
color. For example, in the figure below, we employ color as a tool for
understanding the prompt. All given information is colored green in the diagram
and indicators for the statement that is to be proved are drawn blue, thereby
changing the prompt to “If green is true, then blue must be true” (see Figure 6).
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Figure 6. The statements in the prompt translate to “If green,
then blue” in the diagram.

Continuing this process means the coloring scheme expands. It includes more
colors as we use the scheme as a tool for representation (see Figure 7).

5.2. Purpose. Every color that you use should have a purpose – it captures
some shared characteristics of the labeled parts. For example, in the diagram
below, segment AE is congruent to segment EC. The purple double-ticks on AE
and AC in the figure show congruency. We do not use purple again because there
are no other segments necessarily congruent to these. We use green, red, pink,
and blue in similar ways (see Figure 7). The monochromatic use of single or
double ticks is enhanced with color as a tool for reasoning.

Figure 7. The diagram is colored to show “green is congruent
to green” and “purple is congruent to purple.” Therefore “red is
congruent to red” and “pink is congruent to pink.” Thus “blue is
congruent to blue,” completing the proof.

5.3. Incorporation. After completing a color-coded analysis of a figure or
set of figures, the subsequent written proof should also incorporate the colors used
in the figure analysis – either by writing, underlining, or highlighting in the
appropriate colors. For example, in the two-column proof in the figure below the
two congruent angles \BAC and \BCA are colored red in the diagrammatic
proof. This is noted in the corresponding two-column proof by underlining the
congruence statement in red. Other statements are similarly underlined in green,
purple, pink, and blue (see Figure 8).
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Figure 8. The “colored proof” has been translated into a colored
two-column proof.

5.4. Consistency. When using color to teach geometry, be consistent with
color use. Always make a legend to label the use of color, and consistently explain
the property or characteristic captured or represented by the color in that color
and in words. Students will be more inclined to use color in their learning process
when it is a consistently modeled for understanding and representation. In Figure
6, in addition to coloring the “given” statements green and the “prove” statement
blue, we included a note to accompany the diagram. In Figure 7, we included a
colored legend to indicate congruences. This assisted us when we translated our
colored proof into a traditional two-column proof in Figure 8.

5.5. Resources. Provide color tools in the classroom such as colored pencils
or markers. This provides an equal opportunity for all students to participate by
using color. Note that students may be more inclined to use color in their personal
work when the tools are reliably available and their use expected in the classroom.

6. Conclusion

The utilization of color is not intended as a method for getting students’ attention
or as a means to make complicated drawings more attractive. Rather, through
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color-coding, relevant information in a proof is highlighted and significant
relationships among components are foregrounded. Proof coloring is also
beneficial for students to use as a learning tool on their own. A student can
choose, strategically, how to color accompanying diagrams.

The strategies we have illustrated here are to color-code as a tool (1) of
representation for facts and (2) for understanding of relationships. Such
color-coding can assist students in packing and unpacking information and
managing the complexity of proofs and proving. Furthermore, it may be that
teachers can better assess how a student is approaching proof writing based on
the color scheme utilized by the student. It provides teachers with a tool to help
communicate with individual students and their di↵erent approaches to proof
writing.
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