GEOMETRY LESSON Flying Kites: Raising Students Sky High

Veronica C. Chaidez and Jessica Romo

Overview

- **Concepts:** Geometry, Measurement, Number Sense, Mathematical Reasoning, Critical Thinking, Number and Operations, Communication
- **Skills:** Identify the properties of a kite and a rhombus, create a kite or a rhombus blueprint aligned with the geometric properties of each individual geometric shape, construct the kite or the rhombus to scale using the previously designed blueprint.
- **Vocabulary:** *rhombus* (a quadrilateral with all sides equal in length; a square is a special case of rhombus); *kite* (a quadrilateral with two distinct pairs of adjacent sides; a rhombus is a special case of kite); *midpoint, vertex, vertices.*
- **Properties:** rhombus: Any side can be a base; the altitude of a rhombus is the perpendicular distance from the base to the opposite side (or, when needed, its extension); the area of a rhombus can be found in several ways (see bonus activities, below). *kite:* At least one pair of opposite angles have equal measure; angles between unequal sides have equal measure; no angle is greater than 180° (a kite becomes a *dart* when one of the unpaired angles is greater than 180°).

Grade Level(s): 6, 7, 8. Duration/Length: Three (3) 50 minute periods.

Prior Knowledge: measuring using a ruler, scaling measurement with ratio or proportion, right angles, and attributes of line segments and shapes (e.g., diagonals, midpoint, vertex).

- California Common Core State Standards: Grade 6: 6.RP.1, 6.RP.3.d, 6.NS.3; Grade 7: 7.RP.2.b, 7.NS.2.a, 7.NS.3, 7.G.1, 7.G.2; Grade 8: 8.G.1.3, 8.G.1.4. California website for the state standards: www.cde.ca.gov/be/st/ss/documents/ccssmathstandardaug2013.pdf.
- Materials: $8.5^{\circ} \times 11^{\circ}$ white copier or grid line paper, markers, color crayons, color pencils, rulers, protractor, markers, light colored (e.g., white) 13-gallon plastic trash bags, electrical tape, dowels $1/8^{\circ} \times 36^{\circ}$ (two for each group), super twine string, permanent markers, and scissors.
- **Background:** What makes a kite fly? What are the mathematical concepts addressed in the construction of a kite? The goal of this project is to have students develop, construct, and fly a handmade kite. By the end of the project, not only will students recognize that the three main

forces that affect the flight of a kite (lift, gravity, and drag) are crucial but also that a kite's geometry is integral to its balance and flight capabilities. Through this engaging, hands-on project, students will apply critical thinking skills and spatial reasoning and deepen their understanding of measurement, geometric constructions, scale, and proportion. This lesson can be used to review geometry content or to introduce new material, including academic language.

Day 1

Description: The lesson begins with a teacher-led discussion that will ultimately lead to a student introductory activity on the development of a flying kite.

Materials: $8.5^{"} \times 11^{"}$ plain paper or grid paper, ruler, and colored pencils or crayons.

Teacher Activities	Student Activities
Step 1 (15 minutes) Launch. Teacher starts with class in a discussion exploring the properties of kites and rhombuses. While displaying illustrations of each quadrilateral, the teacher asks students to identify some visible attributes of each quadrilateral. The teacher guides class discussion toward discovery of the properties unique to a kite and a rhombus. The classroom discourse goal is to simultaneously construct curriculum knowledge and develop academic language associated with the mathematical concepts. To support language development, vocabulary terms are introduced or reviewed in tandem with notation symbols (e.g., tick marks symbolizing congruent segments). Ensure discussion addresses line segments in polygons (i.e., perpendicular and intersecting lines). On the word wall, whiteboard, or poster board teacher gathers the identified characteristics and academic language throughout the	Student ActivitiesThe students participate in a class discussion,pinpointing some of the distinguishableattributes of the two quadrilaterals. This willallow them to discover attributes that arespecific to each shape. Furthermore, they willbe able to see any similarities that bothshapes may have.As the students are identifyingcharacteristics of the shapes, they are asked touse the academic terminology associated withthem. This allows students to become familiarwith the terminology that they will be usingfor the subsequent lessons. By the end of theclass discussion, students will be familiar withthe properties of kites and rhombuses.
discussion for students to refer back to as needed. Step 2 (30 minutes) Hands-on student activity. The teacher strategically puts students in groups of 2 to 4 members. Each group's task is to create scaled drawings of two distinct flying shape designs (kite and rhombus) on $8.5" \times 11"$ paper, highlighting the properties of each quadrilateral. Depending on the grade level, the scale could be provided by the teacher, or it can be created by the students. Once scale drawings are completed, within the group students compare and contrast the two designs and form a hypothesis and justification about whether one design will fly better or that both will perform equally well. Students enter the conjecture and rationale into their individual notebooks.	Once the students have become familiar with the properties related to each figure, they work in assigned groups of 2 to 4 members. Each group creates a scale drawing for each of the two designs: a true rhombus and a true kite. Each group will need to discuss which of the two designs they predict will function the best when flying and why. Each student will enter this hypothesis into her or his notebook, along with deductive rationale, based on the properties of each quadrilateral. At the end of their group discussion, the members must agree on one design to test, which will they will create the following day.
 Step 3 (5 minutes) Whole class discussion. The teacher poses questions with the intent of reinforcing what the students have learned. Select students to purposefully scaffold discussion (e.g., see Stein, Engle, Smith, & Hughes, 2008). Closure Questions: What is at least one academic or mathematical word you learned today? What mathematics did we do today? Explain as if you were describing the lesson to someone who was absent. What was the most challenging concept? Explain. 	Students participate in the closure discussion. As the students are responding, they will be reinforcing the material that they just learned and clarifying misconceptions that were left unaddressed in the beginning of the lesson.

Day 2

- **Description:** The lesson will begin with a teacher-led discussion that will review and reflect on content from the previous lesson. After the class discussion, each individual group will engage in the construction of their pre-decided flying shape design.
- Materials: light colored/white plastic trash bags, electrical tape, dowels, string, different colors of permanent markers (e.g., *Sharpies*), scissors, and rulers.

Teacher Activities	Student Activities
Step 1 (5 minutes) Launch. Begin the lesson by reviewing the	The lesson begins with students
properties of a kite and a rhombus in the form of a	participating in a class discussion. Students
teacher-guided class discussion in which every student has the	have the opportunity to review the material
opportunity to share information and ideas. Throughout the	from the previous day: properties of kites
discussion, the teacher assesses student content knowledge and	and rhombuses. They also have the
determines if further review is needed. The teacher answers	opportunity to ask questions about the
questions and addresses any related student concerns before	content or the instructions for the group
starting the group activity.	activity that will follow.
Step 2 (25 minutes) Construct the flying shape. Students	Students return to Day 1 groups and select
get in their pre-assigned groups and appoint a "runner" to collect	a "runner" who gathers necessary materials
materials. Note: Post the materials list in an area that is visible	to construct one flying shape. Students
to all students. As student groups create and decorate their flying	draw an outline on the garbage bag, cut the
shapes, the teacher walks the classroom, making sure students are	bag along the outline, unfold, and verify the
on task and following the directions correctly (see Instruction	scaled measurements of the diagonals. The
Sheet, page 15). If it seems many groups are struggling, the	lengths of the diagonals are used to
teacher can bring the class together and review necessary steps	measure and cut the dowel sticks to the
with the entire class. Student groups follow their scale drawing	needed sizes. Students tie the dowel sticks
"blueprint" to construct a flying shape, in the form of a kite or	together with string and firmly attach the
rhombus. Keep in mind that the student activity sheet has them	four dowel ends to the four corners of the
use the doubled thickness of the bag and one-half of the outline	cut plastic bag using electrical tape. Lastly,
to mark and cut a mirrored half-shape that will be unfolded to	they attach a long piece of string to their
create the full shape. Suggestion: Have groups personalize their	kites at the intersection of the dowel sticks.
kites using colored markers.	
Step 3 (12 minutes). Flying! The class goes to an open space	Each group member has the opportunity to
where they can easily attempt to fly their shapes. The teacher	get the shape flying. Once they have tried
makes sure that each group member gets a chance to fly the	their own shape, students trade with at
group's shape. Additionally, the teacher ensures groups jot down	least one other group, preferably with a
key observations about trying to fly the shape. The teacher also	group that chose the alternate geometric
encourages groups to trade with trade with at least one other	shape. Students record observations in
group, preferably with a group that chose the alternate	their notebooks (e.g., challenges that arose
quadrilateral, and repeat the flying attempt and making of	while flying each shape; comparing and
observations and notes.	contrasting the experience of flying different
	shapes).
Step 4 (8 minutes) Debrief. All return to the classroom for a	Students discuss their individual
short discussion. The teacher asks questions regarding student	experiences, sharing similarities and
observations and challenges. The teacher also asks students for a	differences identified between flying the
discussion that compares and contrasts the two types of shapes	two different kinds of shape. The
when flown. The teacher leaves the discussion open-ended in	students share and compare results with
order to promote an authentic reflection from the students in the	the entire class, making notes for use in
reflection assignment (see below).	the homework reflection and for the
	next class meeting.

Assignment/Reflection Paper (homework): The students are instructed to write a reflection paper describing whether or not the empirical results of the experiment support their theoretically-grounded hypotheses. They must analyze data collected during Step 3 but may also

include other experience. The purpose of the reflection is for the students to analyze their data, draw conclusion, and support their claim through cited evidence.

Reflection Question: Did the shapes fly the same? If not, which type of shape flew the best (kite or rhombus)? Why?

Day 3

- **Description:** The lesson begins with a teacher-led discussion that reviews and reflects on content from the previous lesson. After the class discussion, each student group creates a presentation on the flying shapes experience and mathematical concepts.
- Materials: Notes from previous days, access to presentation materials or software (e.g., poster board or Google Doc presentation), flying shapes from Day 2 (optional).

Teacher Activities	Student Activities
Step 1 (5 minutes) Launch. The teacher begins the	The students engage in the class discussion
lesson with a guided discussion regarding student individual	regarding their conjectures. They share key ideas
reflection papers and their final conjectures on whether the	supporting their claims.
shapes flew the same or if one flew more effectively. The	
teacher scaffolds discussion by seeking purposefully chosen	
volunteers to start with commonly noted ideas and increase	
complexity to more subtle aspects of the similarities and	
differences in the shapes and their flying performance.	
Step 2 (30 minutes) Presentation preparation. The	The students get into their groups. Each group
teacher directs students to assemble into their pre-assigned	member is required to share their conjectures
groups and to (1) give each person up to 2 minutes to state	with supporting information. Once each group
the hypothesis and support from their reflection paper and	member has shared, the group as a whole reviews
(2) after all ideas are presented, discuss their reflections	ideas and comes to a consensual hypothesis that
within the group. Then, (3) students must come to a	either one quadrilateral design performs better as
consensus, from their discussion, on whether the shapes flew	a flying shape or the two are equivalent. Next,
with the same qualities or if one was more effective than the	they develop an outline for their presentation,
other. Once the students come to a consensus, they (4)	which includes their hypothesis and supporting
brainstorm an outline for their presentation and (5) as a	evidence (e.g., personal experience, specific
group create a short Google Docs presentation on their final	mechanics of the flying shape, data from class
findings. As the students work, the teacher circulates the	discussions, and photos or illustrations).
room, assessing progress and assisting students as needed.	
Step 3 (10 minutes) Share presentation. As groups	Once students complete their presentation (e.g.,
finish, pair them to share their presentation with another	in Google Docs), they share the presentation
group. As the students work, the teacher circulates the	with another group and are audience to the other
room, assessing progress and assisting students as needed.	group's presentation.
Note: The lesson could be extended for one more day in	
order to allow all the groups to present their findings to the	
entire class instead of just one other group.	
Step 4 (5 minutes) Closure. The teacher brings the	The students join the class discussion and offer
class together as a whole for one last class discussion	ongoing commentary during the discussion.
revealing that the rhombus design was a challenge to fly	
due to the highly regular geometric properties of a rhombus	
being inferior in flight.	

Instruction Sheet for Creating the Flying Shape

- (1) Unfold or unroll the garbage bag so it lies flat, but DO NOT OPEN the bag. To ensure a large, even, shape, identify a folded edge of the bag (no seam) and consider how to draw the shape to use as much of the bag surface as possible. Keep in mind that after the outer edges are cut through both layers of the bag, it unfolds into the desired shape.
- (2) Using your scale drawing for reference, align the longest diagonal along the folded edge of the bag then measure and draw an outline of HALF of the chosen shape (kite or rhombus) onto the garbage bag.
- (3) Cut the outer edges of the shape through both layers of the bag.
- (4) After the shape has been cut, unfold the garbage bag. At this point, the shape will unfold in its entirety.
- (5) Measure the diagonals of the shape in order to accurately measure and cut two dowel sticks, one for each diagonal. Once the sticks have been cut to the appropriate lengths, tie the two dowel sticks together (for a rhombus, at their midpoints; for a kite the dowels cross at a ninety degree angle and are tied at the midpoint of the short diagonal and wherever is needed on the long diagonal to make the ends of the sticks line up with the vertices). After tying the sticks together, place the sticks on top of the shape, making sure that the ends of the sticks are at the vertices. Once the sticks have been placed, securely tape the ends to the plastic bag vertices using the electrical tape.
- (6) Cut a piece of string about 4 yards long. Tie one end of this long string around the intersection between the sticks. This will help secure the sticks together and also serve as the tether for flying the shape.
- (7) At this point, the shape is complete and ready to fly. Personalize the flying shape by drawing on the plastic with permanent markers.

Bonus Extension Questions

Bonus 1. There are several ways to find the area of a rhombus. Two correct formulas are given below. Based on what you know about finding the area of rectangles and of triangles, explain why each formula works. Include drawings to illustrate how the two formulas are geometrically equivalent.

Area of a rhombus = $b \times a$, where b is the length of the base and a is the length of the altitude (height). Area of a rhombus = $\frac{d \times D}{2}$, where d is the length of one diagonal and D is the length of the other diagonal.

Bonus 2. A rhombus is a special kind of kite. Do the same formulas work for finding the area of a kite? Why/why not?

Acknowledgement

We would like to thank Dr. Viji Sundar from CSU Stanislaus and the Central California Mathematics Project for support in making this project possible.

References

Stein, M., Engle, R., Smith, M., & Hughes, E. (2008). Orchestrating productive mathematical discussions: Five practices for helping teachers move beyond show and tell. *Mathematical Thinking and Learning*, 10, 313–340.

About the Authors

Veronica C. Chaidez (vchaidez@csustan.edu) is a high school mathematics teacher who teaches secondary integrated mathematics (Math 1), California High School Exit Exam (CAHSEE) Algebra and Geometry, and Success Skills classes (among other things).

Jessica Romo (jromo1@csustan.edu) is junior high school mathematics teacher with experience teaching integrated mathematics and STEM integrated mathematics.