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Exploring Area with Lattice Polygons
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Introduction

The concept of area is subtle. When asked for the area of a triangle on a multiple choice test, many
students select the perimeter if it is one of the options. Those students rely on memorized formulas
without really grasping the concept of area.

Here is an alternative approach to area. It is “näıve” in using hands-on activities that help students to
create their own understandings. For simplicity, we ignore questions about areas of curved shapes like
circles and of three-dimensional shapes like spheres, concentrating instead on areas of polygons. We will
see there is much to be learned from simple explorations like those presented here.

We will rely heavily on two basic properties of area:

Property 1.: If a figure is made up of pieces which do not overlap, its area is the sum of the areas
of the parts.

Property 2.: The area of a figure does not change if the figure is moved.

These properties are absolutely fundamental, but they are scarcely mentioned in textbooks for elementary
or secondary students (or for teachers)!

Figure 1

In order to measure anything, a unit must be chosen. For area the
unit is usually a square of a given size, such as one square centimeter,
one square inch, or one square mile. The area of a geometric shape
is the number of those square units, possibly broken into pieces and
rearranged, that fit into the shape. In view of property 2, if an object
consists of several copies of a smaller object, its area is that of the
smaller object, multiplied by the number of copies. For example, in
Figure 1 the unit square is shown at the upper left. The big rectangle
is 4 units long and 3 wide and so contains 12 copies of the unit square.
Therefore, its area is 3 × 4 or 12.

Based on examples like this, we take the area of any rectangle to be the product of its length and width:
A = l × w. This reasoning shows why we multiply fractions as we do, because, for example, the product

3

4
× 4

5
is the area of a rectangle

3

4
unit long and

4

5
unit wide.
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Figure 2

Figure 2 shows that 3
4 × 4

5 rectangle shaded dark grey. The dark grey
rectangle is part of the larger shape, a unit square. The unit square
is 1 unit long and 1 unit wide. The unit square in Figure 2 is cut into
4 × 5 = 20 identical small rectangles, each of which must have an

area of
1

20
. The dark grey rectangle contains 3 × 4 or 12 of the small

rectangles, so
3

4
× 4

5
=

12

20
. Similarly, the medium grey, light grey,

and white rectangles show, respectively, that:

1

4
× 4

5
=

4

20
,

3

4
× 1

5
=

3

20
, and

1

4
× 1

5
=

1

20
.

Polygons, a few of which are shown in Figure 3, are figures made of line segments joined end to end. The
explorations presented in the remainder of this piece concern polygons with vertices (corners) at points in a
square array or lattice (see Figure 4).

Figure 3

For this work it is sometimes handy to
use rubber bands and geoboards.

Geoboards were used as early as the
first half of the 18th century (the
blind mathematician Nicholas Saunderson
made one). They became popular in
schools only when inexpensive,
light-weight ones made of plastic
became available.

Figure 4
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Exploration 1 – A Näıve Introduction to Area

In Figure 4, use the square in the upper left as the unit of area to find the areas of each of the other
polygons. Start with A and work through the shapes in Figure 4 in alphabetical order, using earlier
answers to help find later ones. Take full advantage of the two basic properties of area mentioned above.

Figure 5

It is interesting to see the varied ways that students can see
the same thing. Most students find the area of C by viewing
it as half of a 1 × 2 rectangle, but some find the area by, in
effect, rotating the small right-hand part to fill in a complete
unit square (see Figure 5).

Figure 6

Those same students often extend that thinking to larger shapes, for example, finding
the area of triangles E and G by counting unit squares and halves of unit squares in
each shape rather than by seeing the triangle as half of a square. They may even find
the area of H that way, instead of seeing H as resulting from taking a small half-unit
triangle out of G. A triangle like the one in Figure 6 pushes the limits of that kind of
thinking; finding the areas of the three small parts does not make it easier to find the
area of the triangle. Finding area in this case is easier using “negative space” to see
the triangle in Figure 6 as half of a 1 × 3 rectangle.

Figure 7

Figure 8

Figure 9

Here are two ways fifth graders handled
triangle F . One student first noted that
she had already found area A as 1

2 and
area C as 1, as pictured in Figure 7.
Next, she thought of C as made up
of two shapes, one like F and the other
like A, as in Figure 8.

A second student found F hard, so
she skipped it and came back to it
later. She found a clue in K, which
she saw as a rectangle with area 2 minus
two triangles like A, one of them upside
down, as in Figure 9. She had seen K as
made of two copies of F , one of which
is upside down. Having found the area
of K as 1, she concluded that the area
of F must be 1

2 . Other students found
still more ways to get the same answer.

I first used this exercise with a fifth grade class. Some of the students, perhaps through older siblings, had
heard that the area of a triangle is half the base times the height. They used that idea to rush to the
conclusion that, for example, the area of shape F is 1

2 without actually thinking through the question.

Figure 10

This use of a formula or recipe to get an answer without really thinking
through the question is exactly what I intended to prevent! Therefore,
we have triangle Q, because neither the base nor the height is easy to find.
Students are pushed to figure out the area from first principles. One way
to do that is to think of triangle Q as part of a 2 × 2 square with
area 4, as in Figure 10. The four units of area consist of triangle Q, the two
flanking larger triangles, and the small triangle in the upper left. That smallest triangle is just like A in
Figure 4, so it has area 1

2 , while each of the flanking triangles is a copy of C in Figure 4 and so has area 1.

Since the square has 4 units of area, that leaves just 1 and a 1
2 units of area for triangle Q.

Volume 8, Fall 2017 37



Exploration 2 – Areas of Lattice Squares

In Figure 11, square A is the unit of area. Question: What areas can squares have, if all four of their
corners are lattice points? We will call those squares lattice squares.

Figure 11

To clarify the question, note that B is not a lattice square, because three of its vertices are not lattice
points. D and E are not squares. Students quickly find squares like C and soon guess that the answer to
the question is that lattice squares can have perfect square numbers as areas. That only partially answers
the question, however. When pressed to investigate further (“Would I have asked you a question with such
an obvious answer?” “You need another slant on this problem.”) they eventually discover examples like F ,
and then the investigation really gets going.

Figure 12

Figure 13

Figure 14

Now that the question is clear, try to find lattice squares with various areas up to 25.
Whether you do this with others or just by yourself, allow plenty of time for this.
Graph paper works as well as dot paper.

Whenever students claim to have found the area of a lattice square, they have
to give a persuasive argument to support that claim. This serves two purposes.
First, explaining to others solidifies one’s own understanding, and second, they
learn the importance of expressing ideas clearly. To illustrate, here are two ways
students might justify their claim that 5 is the area of the square in Figure 12.

First explanation: Cut the square in Figure 12 into five parts, as in Figure 13.
Each shaded triangle in Figure 13 is like triangle C from Exploration 1, together
the four shaded triangles together have area 4. The unshaded center square has
area 1, so the tilted square has area 4 + 1 = 5.

Second explanation: As shown in Figure 14, put a larger square around
the given, “tilted,” square. The large outer square in Figure 14 is 3 units long
and wide, so its area is 9. The four shaded triangles, as in the first method,
each have area 1, leaving 9 − 4 = 5 as the area of the tilted square.

As students find areas they can make, have them tabulate their results, with each
whole number from 1 to 25 in the appropriate row, as in Figure 15. We have
seen that we can make 5 (shown above) and all perfect squares, so they are already
entered in Figure 15. The pattern in the table is hard to find, unless you go
back to the geometry.

Figure 15
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Figure 16

Students may have found that one way to make a lattice square is to put
corners at any pair of dots whatever, such as P and Q in Figure 16.
Then complete the square based on how far over and up you moved from
the first dot to the second.

In this case, you get from P to Q by going 2 units to the right
and 1 unit up like a knight’s move in chess. Now from Q go 2 dots
down and one to the right to get to R, and from R go 2 dots to
the left and one down to get to S. Finish the square by connecting S to P .

Evidently, the square is determined by the “key move” from P to Q, which
we write (2, 1), meaning 2 over, 1 up. A move, such as this is called a vector, and the two numbers used
to describe a vector are called its components. The areas of lattice squares depend on the vectors used to
make them. To find the link, start by completing the table below (Figure 17).

Figure 17

Now you can see that it is impossible to make a square with area 3, because squares with areas 1 and 2
have used all the key vectors with components 0 or 1, and key vectors with larger components lead to
squares with areas of 4 or more. Even at this stage, some students may be baffled. Additional help can
come from the observation that, in addition to perfect squares, we can make any number that is one more
than a perfect square, such as 2 (1+1), 5 (4+1), 10 (9+1), or 17 (16+1).

Figure 18

Key vectors with a zero component all produce squares with
perfect square numbers as areas. The key moves for
numbers that are one more than a perfect square have a
1 instead of a 0 as their second component. For example,
the key move for the square with area 17 is (4, 1), much
like the key vector (4, 0) for the square with area 16,
but it has 1 instead of 0 as its second number.

Eventually, students will discover that the area of a square
can be found by adding the squares of the components of
the key vector for that square. For example, a square with
key vector (4, 2), as shown in Figure 18, has area 42 + 22

which is 20 + 4, or 24.

We can check that in two ways – much as was done in
Figures 13 and 14.
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Figure 19

Figure 20

First check: Divide the interior of the square into pieces as
shown in Figure 19. Here the four triangular pieces can be
put together in pairs to make two rectangles, each 2 × 4.

The total area of those two rectangles (four triangles) is 16.
The white 2 × 2 square in the middle has an area of 4. So,
the area of the tilted square is 16 + 4 = 20.

Second check: Embed the tilted square in a larger square,
as shown in Figure 20. The large square is 6 × 6 and so has
area 36. As done in the first check, immediately above, the
total area of the four triangles is 16. Subtracting the areas
of the triangles leaves 36 − 16 = 20 as the area of the
tilted square.

Reflections – What Can We Learn?

Looking back at the work, you may notice that two explanations
were used many times and seem to work generally. Consider then,
a more general view of the method of embedding the square in a
larger one.

Below, in Figure 21, embedded in a larger square whose length
and width are a + b, is a tilted white square. The smaller,
tilted, square is generated by the key vector (b, a).
Meanwhile, in Figure 22 we see the same larger square, with the triangles pushed together to form
rectangles. Evidently, the two white squares in Figure 22, together, have the same area as the tilted square
in Figure 21. So, the tilted square in Figure 21 must have area a2 + b2. If we call the edge of the tilted
square c, its area is c2 and we have the familiar statement of the Pythagorean relationship, a2 + b2 = c2.
Note, by the way, that this does not depend on a and b being whole numbers.

Figure 21 Figure 22

This is, of course, a good way to introduce the Pythagorean theorem, as it avoids having students
memorize a formula before they understand it. At a more elementary level, it offers students a peek
around the corner at mathematics they will study later in their school careers. We have sidestepped the
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topic of square roots here, because it is numerical rather than geometric, but this lesson would be a good
way to motivate the study of square roots. You might start, for example, with square F in Figure 11.
Knowing that it has area 2, can we find the length of each side? That length is clearly between 1 and 2,
but determining it precisely is a challenge, because it requires finding a number whose square is 2. That is
a wonderful classroom exploration, but we will not pursue that here.

But wait, there’s more!

Having, in effect, led students to rediscover the Pythagorean theorem is a worthy outcome of the original
investigation, but it does not completely answer the question of what numbers can be the areas of lattice
squares. The initial observation that you can make any square whose area is a perfect square number grew
to the more complete answer that you can make any square whose area is either a perfect square or a sum
of two perfect squares. But just which numbers are those? This is a topic for a whole new exploration,
focused on numbers rather than geometry. It turns out that the areas up to 50 that you can make are:

1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 36, 37, 40, 41, 45, 49, 50.

This list of numbers has some curious properties. For one thing, the product of any two numbers in the list
is another number in the list. As is sometimes said, this set of numbers is “closed” for multiplication.

Figure 23

We have already seen two ways to show that 20 is in the list, but
there is a third way, based on the fact that 20 is the product of two
numbers in the list, 4 and 5.

In Figure 23, the big square from Figure 18 is cut into four copies of
the square shown earlier to have area 5 (in Figures 13 and 14), so the
area of the big square is 4 × 5 or 20. You might use this idea to show
pictorially why 18 is an area of a lattice square (i.e., made up of 9
small tilted squares, each of area 2). That is, 18 = 9 × 2, and both
9 and 2 are areas of lattice squares.

The area of the square in Figure 24 can be found by extending the idea
used for Figure 23. The larger shaded dots form a coarse tilted lattice.
In terms of that coarse lattice, Figure 25 is much like Figure 16 with the area of the larger square equal to
5 basic squares of the coarse lattice. But each basic square of the course lattice has area 22 + 32 or 13. So,
the area of the square in Figure 24 is 5 × 13 or 65. As a check, note that in terms of the original, finer,
lattice the key move for the large square is (7, 4) and 72 + 42 = 49 + 16 = 65.

Figure 24 Figure 25
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There are other curious properties of the numbers in the list of areas of lattice squares, related to their
prime factorizations. If you look at just the odd prime numbers in the list, you will find 5, 13, 17, 29, 37,
and 41. Absent from the list are the primes 3, 7, 11, 19, 23, 31, 43, and 47. Of course, the list above goes
up only to 50, but that is enough to reveal a pattern. To see it, divide each of these primes by 4 and look
at the remainders. Some leave remainder 1, others leave remainder 3. . . Enough said! By now you can see
there is plenty of material for further exploration.
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