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Abstract. Preface for the Teacher: Exploring the shapes in this paper can increase student
understanding of basic concepts of space geometry and allow teachers and students to consider
ideas such as these:

• How can cubes be examined and used to create other examples of polyhedra that fill space?
• How can relationships from plane geometry such as the Pythagorean theorem, be used to

find lengths and shapes to create nets to build space-filling polyhedra?
• How can models of these space-filling shapes be constructed and used to build intriguing,

hinged 3-dimensional puzzles?

1. Introduction

In the plane, three regular polygons, the square, the equilateral triangle and the regular hexagon,
can be arranged to tile the plane without gaps between the shapes. In space, as you know from
building with blocks, the cube can fill or tile space in the same way. Filling or tessellating is
distinct from packing space. Space packing refers to an arrangement of objects in three-space.
The objects touch in some specified way, but voids are allowed to exist. In a space filling or
tessellation, there are no voids. In On the Heavens, written in 350 B.C., Aristotle proclaimed that
the regular tetrahedron fills space with no gaps. He was mistaken.

Figure 1

However, a particular tetrahedron, with dimensions
derived from the cube, does fill space (Frost &
Koch, 2005). This tetrahedron with its closely
related polyhedra — the cube and the rhombic
dodecahedron — and their space filling properties
will be the focus of this paper.

Figure 1 illustrates what will follow. It shows
a rhombic dodecahedron sitting inside a framework
of cubes. This shape derives its name from
its twelve (dodeca) faces, all of which are congruent
rhombi. This paper will explore the connections
between a special non-regular tetrahedron, the
cube, and the rhombic dodecahedron, and will show
how to use their common dimensions to create
a net or pattern to build three intriguing puzzles.
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2. Filling the Plane Using a Checkerboard

Before moving into three-space, let’s look at the idea of filling the plane in two dimensions. The
square is one of the polygons that clearly will fill or tessellate the plane.

Figure 2

Imagine that you are looking at an infinite checkerboard
of alternating black and white squares. Each white
square has a our neighboring black squares. For any
point in a white square, you can ask which of the black
squares is closest. Then collect together all the white
points that are nearest to each of these black squares.

This is accomplished by dissecting each of the white
squares along its two diagonals, forming four congruent
triangles, each one sharing an edge with a black square
(Figure 2). The points on the diagonals are an equal
distance from two or more black squares.

Now imagine “re-assigning” points into new shapes by
attaching each white point to its nearest black square.
Each triangle is then added onto the black square with

which it shares an edge. This divides the plane up in a different way

Figure 3

so that it is covered by pieces that look like a black square with
four white right triangles attached (Figure 3).

By examining this figure, you can see that the new shape is also a
square, which is twice the area of the original square, and rotated 45 degrees.
The plane is covered by these new larger squares.

3. Filling Space Using a 3D “Checkerboard”

Now extend this exercise into three-space. The cube is one of the polyhedra that will fill or
tessellate space. In the three-dimensional case, the “checkerboard” is made of alternating black
and white cubes. As you did before, you can re-assign the points in each white cube so that each
point is attached to the nearest adjacent black cube. This is accomplished by dissecting the white
cube into six congruent square-based pyramids formed by the space diagonals of the cube. One of

Figure 4

the pyramids is shown in Figure 4. Each pyramid is then
added onto the black cube with which it shares a face.
The resulting shape is made of the black cube and six
square pyramids.

By counting, this new shape would seem to have four
triangular faces for each of the six pyramids, for a total
of 24 triangles. But as in the two-dimensional case, pairs
of triangles from neighboring pyramids fit together to
form a planar quadrilateral face—a rhombus but not a
square. So, the polyhedron has twelve
rhombi as faces. This is a rhombic dodecahedron.
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Since the black and white cubes filled space, this new arrangement of rhombic dodecahedra also
fills or tessellates space, with no gaps between. Each rhombic dodecahedron has the volume of a
black cube and a white cube, or twice the volume of one of the original cubes.

You can see the reason the triangular faces of the pyramids fit together to form a planar figure by
adding the dihedral angles between the planes of the polyhedra used to construct the rhombic
dodecahedron. Since the planes of the triangular pyramid faces bisect the 90-degree angles
between the faces of the cube, the triangular faces of a pyramid meet their base at a 45-degree
angle.

Visualizing a pyramid added to the side of a cube and an additional pyramid added to the top of
a cube, the triangular faces of the pyramids that meet at the edge of the cube are the faces you
want to demonstrate are co-planar. Adding two angles of 45 degrees with the right angle between
the faces of the cube gives 45 deg +90 deg +45 deg = 180 deg, so that the angle between a pair of
adjacent triangular faces is 180 degrees. This demonstrates that the triangles lie in the same
plane.

4. Triangles with Sides
√

1,
√

2,
√

3 are Basic Building Blocks

When children play with blocks, constructing towers and walls with them, they exploit the space
filling, or tessellating, properties of the cube. Nature provides marvelous examples of this shape
found in crystals of iron pyrite, fluoride, halite (or salt), galena, and the like. Because the cube is
so familiar, it is a perfect place to start when investigating space filling with students.

Figure 5

While the cube is very familiar to students,
they seldom realize that square roots are necessary
to investigate the relationships among the edges
and the diagonals of the cube. Even those students
who are proficient at using the Pythagorean theorem
to calculate the missing edge length of a right triangle,
may not have encountered its application in three
space. With some gentle guidance, most students will
be able to visualize the triangle in space whose edges
are the edge of the cube, the face diagonal (the diagonal
on one of the square faces) and the space diagonal
(the diagonal connecting two opposite vertices, and
passing through the interior of the cube) in Figure 5.

If the side of the cube is s, the face diagonal can be calculated by applying the Pythagorean
theorem to a right triangle that is one-half of a square face to get the length s

√
2. Next, this

result can be used to calculate the space diagonal. Challenge your students to generate a direct
means for calculating the space diagonal without the intermediate step. Using this three
dimensional version of the Pythagorean theorem, they can show that the space diagonal for any
rectangular prism is equal to

√
(a2 + b2 + c2) where a, b and c are the dimensions of the sides of

the prism. When applied to a cube, the space diagonal is equal to s
√

3, where s is the edge length
of the cube.
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The lengths of the edges of the triangle, if the side of the square is s (which can also be written as
s
√

1), are s
√

1, s
√

2, and s
√

3. This “
√

1,
√

2,
√

3 triangle” is a basic shape that appears in the
cube, the rhombic dodecahedron, the first stellation of the rhombic dodecahedron, and the
tetrahedron being examined in this paper.

This triangle also can be seen as half of a
rectangle. Start with the rectangular cross-
section of the cube cut by a plane through
opposite edges AB and A′B′ of the cube
(Figure 6a). This rectangle (Figure 6b) is
a rectangle whose diagonals are two of the
space diagonals AA′ and BB′ of the cube.
The rectangle has sides s and, s

√
2; so the

diagonal AA′ has length = s
√

3.

Figure 6a Figure 6b

5. Puzzling Isosceles Triangles

In the rectangle shown in Figure 6b, the isosceles triangle ABO is one of the triangular faces of
the six square pyramids formed from the cube. Two of these isosceles triangles fit together to
form a rhombus that is a face of a rhombic dodecahedron.

Figure 7

This isosceles triangle will be fundamental to the construction of
three-dimensional puzzles for the classroom activity, so the
working name for the purposes of this paper is “puzzling”
isosceles triangle.

If the triangle ABO is cut into two right triangles by an altitude
through O, the sides of the right triangle are 1

2s
√

1, 1
2s
√

2, 1
2s
√

3,

so this triangle is similar to the triangle with sides
√

1,
√

2,
√

3.

Thus, the puzzling isosceles triangle is made from two triangles
similar to the

√
1,
√

2,
√

3 triangle, and the rhombic face of the
rhombic dodecahedron is made from four such triangles (Figure 7).

5.1. Constructing the puzzling isosceles triangle. The puzzling isosceles triangle can
be constructed using a compass and straight edge, geometry software such as The Geometer’s
Sketchpad, or using simple paper folding techniques.

Paper folding to construct the basic triangle followed by reflection to construct the rhombus is an
option accessible to even young students. Students in an algebra or geometry course can use the
Pythagorean theorem and reflection to generate the rhombus based on the cube’s edge length.
Students in a trigonometry or calculus course can use the inverse trigonometric functions to build
the face based on the edge lengths and angles. When approached trigonometrically, the angles
can be calculated with the inverse functions. The larger angle in the rhombus is double the larger
acute angle in the

√
1,
√

2,
√

3 right triangle. Using right triangle trigonometry, this rhombus
angle equals 2 tan−1(

√
2), which is approximately 109.47 degrees. The smaller vertex angle of the

rhombus is supplementary to this angle or 70.53 degrees.
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5.2. Directions to paper-fold the puzzling isosceles triangle.

The triangle can easily be created by folding an
8.5 x 11-inch piece of paper. Have students turn
the paper so the longer side is horizontal. This
side will be the base of the triangle. Bisect the
base by folding the paper in half. This creates
a vertical center fold and two 90-degree angles.
Next bisect either right angle to produce a 45-
degree angle by folding the bottom vertex onto
the altitude, see Figure 9a.

Figure 9a

Imagine the square for which this new fold is the diagonal. This length will be the height of the
triangle. Bisect the 45-degree angle again, to transfer the length of the folded edge to the center
fold line (Figures 9b and 9c). Place a dot at the point where the diagonal of the square lies along
the center fold. This point is the third vertex point of the triangle.

Figure 9b Figure 9c

Unfold the paper and connect this top vertex
point with each of the two bottom corners of the
paper. This triangle has base length of 2 units and
a height of

√
2 units, Figure 9d. Check that this

is, in fact, the puzzling isosceles triangle. Verify
the lengths of the outside edges and the measures
of the three angles.

Figure 9d
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6. Building a Tetrahedral 3D Puzzle Piece

Cutting the rhombic dodecahedron into special irregular tetrahedral can make fascinating
three-dimensional puzzles. In fact, the net for the tetrahedron puzzle piece can be made from the
puzzling isosceles triangle shown above. The net for the tetrahedron is made up of the four
midpoint triangles of the puzzling isosceles triangle.

6.1. Directions to paper fold the net for the tetrahedron. The net for a tetrahedron
is made of four triangles. This net is made from the puzzling triangle shown in Figure 9d by
dividing the triangle into four congruent triangles, each one similar to the original triangle.
Continuing with the triangle in Figure 9d, bisect the two remaining side lengths by placing the
right vertex directly on the top vertex and making a crease for the midpoint. Repeat this step
with the left vertex positioned on top of the top vertex (Figure 10a). These midpoints can also be
found by bringing the top vertex of the large triangle to the bottom edge, being sure the original
vertical fold lies along itself.

Figure 10a Figure 10b

Using a pen and straight edge, connect each of the midpoints of the three sides (Figure 10b). The
original lengths are all cut in half, so each of the four triangles is similar to the puzzling isosceles
triangle. How can you prove this?

You now have a net for a special tetrahedron that will be used to create three related puzzles.

6.2. Space-filling properties of the special “puzzle” tetrahedron. Now that you have
created the net for this tetrahedron, examine both its special space filling properties and its
relationship to the rhombic dodecahedron. The following are suggested areas of exploration and
discussion to consider pursuing with your students:

• At two of the edges, the faces of this tetrahedron meet at 90-degree angles. Ask students to
explain this by mentally cutting the tetrahedron in half and using the Pythagorean theorem.
(Hint: The altitudes of the two faces forming the angle are both 1

2

√
2. These two segments

are two sides of a triangle in space with the third side being an edge of the tetrahedron. It is
possible to show that this triangle is a right angle and that the angle of the triangle is the
(dihedral) angle between the faces.)
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• Ask your students to show how to use this right angle between planes to fit two tetrahedra
together so that two faces join to form one of the rhombic faces of the rhombic dodecahedron.
• Ask your students to show how to use this right angle between planes to arrange four of

these tetrahedra to form a double pyramid made of two of the pyramids studied above.
• Ask your students to explain how to fit together a number of these double pyramids to form

a rhombic dodecahedron.

6.3. Seeing the special tetrahedron in the photo of a rhombic dodecahedron. As
you calculated above, twenty-four of these units can pack around a central point to create a
rhombic dodecahedron. The picture in Figure 11 is the photo of a puzzle made of black and white
“puzzle” tetrahedra whose net was constructed above. It is challenging to visualize the shape
from the photo.

Figure 11

First, notice that four rhombic faces are visible. Each rhombus
is formed from two triangles. As you saw above, each triangle is
one of the puzzling isosceles triangles that are faces of the puzzle
tetrahedron. This fits with the observation in the previous
section that two tetrahedra fit together to form a rhombic face.

Second, notice the square pyramid
in the center with four triangular faces. This is the visible
portion of the square double pyramid made of four puzzle
tetrahedra. As you examine the picture, visualize the cube
hidden inside, surrounded on each face by a square pyramid.

Also, notice how much the photo resembles the plane checkerboard figure at the beginning of this
paper. This helps to illustrate how an infinite number of these rhombic dodecahedra would fill or
tessellate space.

6.4. Seeing the special tetrahedron in the photo of a stellated rhombic
dodecahedron. The photo in Figure 12 shows a solid derived from the rhombic dodecahedron
by positioning two special puzzle tetrahedra on each of the twelve faces of the rhombic
dodecahedron. Another way to create this shape is by extending each of the faces of the rhombic
dodecahedron outward until they intersect, forming what is called the first stellation (stellation
meaning star) of the rhombic dodecahedron. What a beautiful shape!

Figure 12

If you are familiar with M. C. Escher’s print “Waterfall,”
this shape is atop the tower in the upper right hand corner.

This shape also fills (tessellates) space. This is not easy to see,
but here are some hints. Imagine slicing the shape into eight
congruent pieces by cutting the shape along three perpendicular
planes (forming eight octants in space). One plane should
be parallel to the picture plane (slicing through the square you
see looking at it from above) and the others should be
perpendicular to the picture plane, to each other, and to the
edges of the square that is the projection on the picture plane
(as in Figure 13).
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Figure 13

Each of the eight pieces is half of a cube with squares on three
faces. By surrounding the figure above with a jacket of eight
more of these half cubes, the new polyhedra will be a larger
cube. These half cubes are made up of three square pyramids.

This is difficult to visualize without physical models,
but it does explain how to fit stellated rhombic dodecahedra
together to tessellate space. Try to convince yourself
that an infinite number of these really would fill space in
the same way that a cube fills space. You may need to make up
four to six (or more) of these and try stacking them together.

7. Building Puzzles Using the Tetrahedra

As a class activity, have your students create the puzzles illustrated in the pictures included in
this paper. Working with these puzzles gives students a context to use and apply important
geometric vocabulary and concepts they have learned. These puzzles also encourage perseverance
and quality work from students as they discover that care and exactness in construction allows
the puzzles to fit together tightly and move smoothly.

Figure 14. Rotating Ring (left) Rhombic Dodecahedron (center) and Stellated Rhombic Dodecahe-
dron (right).

7.1. Models from manila file folders. After each student has carefully folded the tetra-
hedral unit (see Figures 9–10) using an 8.5 by 11-inch piece of paper, have them glue-stick their
paper to half of a manila file folder and cut out the large triangle. Using a straight edge and a
sharp pen (e.g., a roller ball pen), they should line up the straight edge next to each of the three
mid-segments and run the pen along the line. This will produce a sharp crease along the line. To
make this process (called scoring) even more effective, they should place about five sheets of
paper under the file folder to act as padding. Identify the long edges of the triangle for later use.

The triangle is then folded into a tetrahedron and taped along the three remaining edges. Care
should be taken to be as accurate and careful as possible with these units since the puzzle should
pack together fairly tightly. Packing tape works best for taping the tetrahedra because it will not
split and is much less expensive than Scotch or Magic tape.
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7.2. Make a basic pair of tetrahedra. As you look at each tetrahedral unit, pick out
which edge length has a length of two units and which edge length is

√
3 units (about 1.73 units).

As you place two units facing each other (mirror images), the longer edge (represented by the
dashed line in Figure 15) will create the connection making a flat rhombus sitting on the table as
shown in Figure 15. The bold edges rising above the table will be the shorter lengths (

√
3 units).

Figure 15

The outside edges (touching the table) will also be
√

3 units.
The two remaining edges (rising above the table) will be the
longer edges like the common edge on the table (dashed line).

Hinge this basic pair with tape along the common edge on
the table. Then bend the pair at this hinge so that you can tape
the hinge on the other side with a second piece of tape. Double
taping the hinges in this way is important to keep them from
falling apart.

Model 1: Rotating ring from 8 units. To create a rotating ring of tetrahedra, eight of
these tetrahedral units need to be connected along their long edges using strips of packing tape.
Make up four sets of basic pairs of tetrahedral units (as above). Hinge these sets together along
their long edges (tape the hinges again on both sides). This creates a hinge between each basic
pair of rhombus-faced pieces. When all the pieces are connected together in a tight ring with the
shapes meeting together in the middle, they pass each other as they rotate around. The rotating
ring is on the left in the picture below. This is one of the kaleidocycles in Doris Schattschneider
and Wallace Walker’s (1987) book, M. C. Escher Kaleidocycles.

Model 2: Rhombic dodecahedron from 24 units. By connecting twenty-four of the
tetrahedral units along their shorter lengths (thicker lines in the sketch) you can create a rhombic
dodecahedron. You can also form this shape by taping along their longer lengths. In either case,
this creates a long ring that looks much like a necklace that can be pulled together into the shape
of a rhombic dodecahedron.

Model 3: Stellated rhombic dodecahedron from 48 units. George Escher (personal
letter, September 6, 2001) stated that forty-eight of these tetrahedral units can be arranged to
create the stellated rhombic dodecahedron. However, the units need to be connected in a ring
and hinged along their shorter lengths to make this work. Have each student create a tetrahedral
unit cut from 8.5 by 11-inch paper and glued to a file folder. The resulting chain will be about 15
feet long and makes quite a challenging puzzle to put together. If you plan to keep it together as
a stellated rhombic dodecahedron, you will need rubber bands to secure the puzzle.
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